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Recently, a new approach for the utilization of GC-MS data has been 

proposed. The main novelty consists of subjecting all of the eluting l ” w;\ 
components from the gas chromatograph to the tis scans. The obtained huge 2 

volume of new information enables a chemist to get a much more detailed 

look in the chemical composition of a sample than previously. Unfortunately, E 
T m 

there is no evidence that the new technique will make the problem of 

overlapping peaks obsoaete, although it till certainly take away some . 
0 -n edge. z! 
n 

This is perhaps a good time for a brief critical review of the field. 5 

An advanced viewpoint is adopted, because the "advanced" viewpoints tend : 
F 

to be unifying , and it is in this form, the author believes, the material $ - 

should be handed over :o the chemists and to the.prograinmers. r' 
* 



INTRODUCTION 

. 

Recently, a novel approach for the utilization of GC-MS data has been 

proposed [l, 2, 31. 

In this approach the mass spectra of all eluting components from the 

gas chromatograph , even very minor ones, are collected in a single 

experimental run. This technique places a wealth of new information into 

the hands of a chemist, who is now capable, with the help of a computer, 

to get a much closer and detailed look into the true chemical composition 

of a sample. Unfortunately;the new technique does not obviate the necessity 

of dealing with the problem of overlapping peaks, although it does hold the 

promise that this problem will now appear with much less severity than 

previously. An example of a situation where the problem of overlapping peaks 

can hardly be avoided is provided by two eluting components with similar 

chromatographic retention indices which are characterized by only one 

prominent ion in their respective mass spectra, and which ion happens to 

be the same in both spectra. Then, the only.available ion that can 

betray the presence of these two components is the one in common, and if 

the retention indices lie sufficiently close, the resulting peak in the 

(retention index, ion current) plot will b? a composite one, asking for a 

suitable resolution technique to.cope with the situation. 

There exists a number of resolution techniques currently in use. They 

can be devided into two more or less distinct classes: those with a 

. well-defined mathematical and conceptual basis and those of more heuristic 

nature. 



CLASS A 

This class covers those techniques which have a sound mathematical and 

conceptual basis. The class A is characterized by the ability to cope, 

at least in principle, with all possible situations that can arise in practice. 

In other words, any peak shape no matter how complicated, can be subjected 

to an analysis whose ultimate result must be a unique sequence of elementary 

peaks which approximate, in a well-defined mathematical sense,, the original _ 

composite peak. : 

The basic underlying assumption in the class A is that tbe "elementary" 

peaks can be represented by a family of analytic functions such as the 

gaussian functions, shew-gaussian functions, Poisson Distribution functions, 

and others. We will have 

s 
where Y i (X a) 

J 
are the elements of this family, aK the coefficients to be 

n 
determined by the fit and x) represents the shape of the composite peak. 

a stands for a fixed'set of free parameters whose values must also be 

determined uniquely from the fit. Approximating 
f' 

(x) in terms of 

functions means making the difference 

as small as possible. Mathematics knowns at least two ways of giving the 

vague notion of smallness a rigorous meaning. One is based on the concept of 

norm, while the other utilizes a more general notion of a functional. Both 

notions associate a number, or a set of numbers, to a function, but they 

do this in a somewhat different manner. 



LeastrSquares method: A common'definition of a norm on a space of functions 

We say that the function h is small if the norm lwl ' defined by (Z), is ' 

small; In this context the approximation (or resolution, as chemists call 

it) of, a composite peak (x) in terms of a fixed set of elementary peaks 

the parameters ai and 4 in such a way to make 
. 

the integral 

as small as possible. This. is the famous least-squares approximation whose 

graphical illustration is given below. 
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A beautiful example of the 

least-squares approximation. The 

data are resolved into the four 

gaussian functions plus a polynomial 

background. 



From the viewpoint of numerical mathematics the least squares approximation 

is particularly suitable approach to a fitting problem if the functions 

.P i(x,o) form so called orthogonal set. The orthogonality is defined 

by the requirement 'that the integrals 

all vanish for i# ' . 
b 

Unfortunately, the functions that can conceivably 

be used in the prob% of resolution of composite peaks are'not orthogonal,. . 

This can be'easily verified on the example of gaussian peaks where the integrals 

refuse to vanish for any finite choie of the peak parameterS,Physically, it is 

quite obvious why the peaks 
W %$ cannot form an orthogonal set. They are all 

positive functions (number of ions variable cannot possibly accept a negative' 

._. . value!), and an integral of a product of positive functions is always positive 
l 

itself, never zero or negative. a 
. , 
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Without having the benefit of dealing with an orthogonal family of. 

functions, the numerical mathematics usually faces great difficulties in 

pursuing the least squares approach. The trouble is that the integrals (3) 

usually display a very complicated functional dependence upon the parameters 

a. 1 and c1 , and it becomes a non-trivial problem to determine for which 

values of these parameters the integrals reach their minimum. It is also 

known that the outcomes of the iteration procedures which are employed in the 

least squares calculations are notoriously sensitive upon the correct choice of 



the starting set of parameters. An unfortunate choice may lead to 

divergences or to an inordinately large number of iterations. Or, one 

may end up with a "false“ solution, lacking reasonable physical 

interpretation. 

In summary, the method of least squares is mathematically well-defined 

and conceptually easy to comprehend. These are the obvious advantages. 

When applied to the problem of overlapping peaks the least squares -_ 

method has the unfortunate tendency.of running into the difficulties of 

computational nature. Immediate dangers are divergences, slow 

convergence and misleading solutions. when contemplating the use of 

least squares in the problem of peak resolution, one should first try a 

judicious set of the family of functions ‘e; CV) , representing the . 

elementary peaks. .A desirable set is the one which makes the functional. 

dependence of the integrals (3) upon the peak parameters reasonably simple. 

Neeldess to say, the functions must also resemble the peaks 

actually observed in the laboratory. Next, a suitable heuristic 

procedure should be devised, whose purposeshould be to make the initial 

guess of the peak parameters as close as possible to their true values. 

This may not be an easy task, if the original composite peak displays a 

tendency of hiding its internal structure. * . l 
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A situation where it is A s+uation where it is 

not difficult to make a difficult, to guess the 

correct initial guess of the approximate values of the . . - 
values of the elementary peak elementary peak parameters. 

parameters 

.* . . . 



Resolution of peaks in the sense of "weak" topology: 

Norm represents one way of introducing the concept of "smallness" 

or "proximity" in a space of functions. The associated topology is called 

"strong" topology. There exists another way of introducing topology 

in the space of functions called'weal? topology. The two are related, but 

the relationship cannot be properly explained without invoking concepts - 

of more advanced mathematics. This is not our intention here, in this 

brief review. Let us consider a set of functions oTi(x) 1 which can 

be finite or infinite, orthogonal or not. Call this set T . To each 

function we associate the set of numbers hi, defined by 

a 1;1-’ s . . . e- Now, we can say that h(x) is small on the set 3 , if the sequence of 

numbers hi is small. If h(x) is the difference (1) between the composite 

peak function WI and the linear combination of elementary peaks 

the sequence of inequalities. 

hiG G* c (pi sma11, say C 10'3) 

defines in a mathematically rigorous sense t$e degree of proximity in _ 

which the elementary peaks approximate the function 
9 (xl- ' 

We can call this method .the resolution of composite peaks in the sense of 

weak topology. 

. . 



.The choice of functions v I'- &(x 1s dictated by the mathematical 

convenience and physical considerations. For example, when dealing 

with the gaussian peaks, it is convenient to use polynomials for r:tx) 

An example: 

Consider a composite peak 
E 

(x), and let us restrict our efforts 

to the resolution of this peak into not more than i%o gaussian peaks. 

Furthermore, for the sake of.simplicity, we may assume that these two 
. 

peaks have the same width and the same height, and differ only in 

location. At the end,.we are left with the three free parameters: the two 

peak locations plus the peaks height. For% functions we use the powers 

i = 0, 1, 2. 

go as follows: 

Elementary Peaks; 

I_.’ Definition of.the Moments: 

I, : 

= i 

l 

-- 
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Without losing generality we can place the origin of the coordinate 

system in the center of the original composite peak, wh%ch is obviously 

a symmetrical peak (otherwise we would not be able to decompose it 

into the two gaussians of the same width and the same height!). This 

will set I 1 to zero. By acknowledging that _.. _. 

and that b, = b,=L 
we obtain final13 

\ 

, 



This example illustrates how the method works, In a more compliczted 
, will 

situation wehhave more free parameters, and will need correspondingly 

larger number of z * functions. Instead of using simple powers of X 

we may also contemplate the use of more sophisticated %l . functions, 

perhaps a subset of an orthogonal set of functions. 
and 

The least squares approachqthe approach via the weak topology 

all but exhaust the techniques of peak resolution that we classified 

under A. The advantages of starting with a well-defined mathematical 

procedure are obvious. It is also important that no peaks lie beyond 

the reach of these procedures. At least in principle, any reasonably 

behaved positive definite function can be expressed as a linear superposition 

of a sufficiently large number of gaussian functions, Poisson Distribution 

functions, or some other sufficiently rich class of functions. 

. . 
After the process of peak resolution is completed, the obtained sequence 

of elementary peaks is amenable to a sensible chemical interpretation. 

Using various criteria, one can separate chemically significant peaks 

from the peaks originating from column bleed, electronic noise or some other 

undesirable source. 

The disadvantages of the procedures Qrom the class A consist mainly 

in the computational difficulties which are a growing function of the 

number of free parameters that have to be determined. The algorithms . 

either show the tendency to fail on more difficult cases, or require large 

execution times. They may also lead to "spurious" or "false" solutions. 



CJXSSB 

This class contains various techniques for peak resolution which 

are not based on solid mathematical reasoning. These are heuristic 

techniques. From the outset their scope is limited. For example, a 

particular heuristic algorithm may require that a composite peak displays 

a clear dip as a marker for the place where two peaks overlap. If 

the constituent peaks overlap too strongly, and no such dip is visible, 

the algorithm will.not work. It was not intended to work with such a 

case, in the first place. And'so, some potentially interesting peak 

shapes are left out from the beginning. This is a universal weakness of the 

heuristic models. The advantages of the algorithms from the class B lie 

in their simplicity. As a rule they perform well and produce fast 

i 
results when applied to the cases which lie well within their domain of 

competence. Perhaps a combination of several heuristic methods would be . . 

desirable. To fix the ideas consider three different algorithms Al, A2 and 

A3, designed to deal with the following three classes of Composite peak shapes. 

SYMMETRIC SHAPE SHOULDER SHAPE . 
Algorithm #l Algorithm #2 

DIP SHAPE 
Algorithm 83 



After a composite peak was scanned, a special procedure would determine 

in which class of shapes this peak belongs. Then, the ocrresponding 

algorithm would be conscribed to perform the peak resolution. In the 

general case the special procedure may involve the whole library of 

characteristic peak shapes. The search through this library may display 

some of the characteristics of the pattern matching algorithms. A brief 

outline:of the overall algorithm may look something like this. 

(1) First, use the least squares method to approximate the data with 

a polynomial of appr%$ately high degree. Evidently the number of available 
.- 

data points will place-restrictions on the degree of the polynomial. Note' 

that the use of least squares in the case of polynomials is a well-known and 

straightforward computational procedure. 

(2) Determine the.number and locations of the local maxima and minima, 

points of inflection and other critical parameters that may be used to determine 

.the shape of a peak. Since we deal here with the polynomials, this information 
F 

comes from a large and well-known chapter of classical analysis. The 

characteristics of peak shapes will be reflected in the restrictions imposed on the 

coefficients of the approximating polynomials- This is a convenient way of coding 

the peak shapes, namely converting purely geometrical entities into the 

strings of numbers, a 

(3) Once a peak is coded in terms of the coefficients of its associated 
.: 

approximating polynomial, this code is compared with a "library of peak shapes" 
_' 

and a call is issued to an appropriate peak resolving algorithm, specifically 

designed to deal with this type of shape. 
. . . 



(4) In this last step the referenced algorithm finally performs the task 

of peak resolution, using as an input the peak parameters determined in the 

step number 2. Having in mind that the performance of most of the.peak 

resolving algorithms depends crucially upon the correct initial guess of the 

peak parameters, we may sun&e that a good overall performance of the algorithm 

will depend a great deal upon the cleverness of the "preparation" steps 1, 2 

and 3. We recall that the proper functioning of the peak resolving algorithms 

of the least squares type is particularly sensitive upon a good-first guess of 

the peak parameters. 

I was unable to find in the literature a reference to an algorithm 

of the described type. Instead, one finds very simple algorithms, 

intended to deal with equally simple cases of composite peak shapes. Few 

examples are given below. 



Geometrical Method: 

If two peaks are sufficiently removed in their overlap to generate a 

dip in the middle, some simple approximate geometrical methods for peak 

resolution can produce satisfactory results. For example, one can drop a 

straight line from the lowest point in the dip and calculate the 

individual areas as illustrated by 

ors -if a small peak "rides" on the tail of a larger peak, one can employ 

so-called "tangent skim" method depicted below 

. 

TANGENT SKIM METHOD 

of the "parasite" peak 



Evidently this method is not applicable in the situations where the 

local dip is missing, as the following "difficult" case nicely exemplifies: 

One special case: 

In certain circumstances the locations and the shapes of the 

elementary peaks are known, while their relative intensities in the 

composite peak are not. The problem is, then, to determine the coefficients 

ci in 

. 

where are the functions of the elementary peaks 

and Xi their locations. 

. . 



The method of least squares requires that a set of Ci's be found 

which forces the integral 

to rea d\- Its minimum. The mathematical expression of this statement is 

given by 

a set of conditions which leads to the following system of n linear. 

equations with II unknowns 

. 

The solution of this system gives the answer to the problem of the 

composite peak resolution for this special case of known locations and 

shapes of the composite peak components. 



Convolution: fc *) denotes, as usual, the function that describes the shape of a 

composite peak. One constructs the integral 

in the hope that with the judicious choice of the know-n test function (3) , 

a useful information can emerge when the variable y scans the region of 

the peak. In the extremal situation when the test function 

is the s - f-metion, the integral reduces to the identity 

and no new information can be extracted from the convolution. On the 

other end of the spectrum of possibilities is a constant, and 

we have 

- . 

t 

. . 

Again, very meager information is obtained. 



For the success of the convolution method it is absolutely essential 

that a correct choice of is being made. The best results will be 

obtained when a.compositelpeak consists of a sequence of- elementary peaks 

of approximately identical widths, and the test function matches this 

width with its own width. Then, whenever the tast function passes 

over the one of the elementary components of I ' an appropriate enhancement 

occ&s with better resolution as a result. This situation is depicted , 

below. 
. 

-- _ ---. _. - . _- - 
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When using the convoltition method one shou&d stay away from the choice 

of too broad test functions, which may result in a misleading information. 

This is illustrated by the following example: . . 



Are the peaksGaussian 

There seems to be no acceptable theory, based on first principles, 

which predicts the shape of peaks observed in the gas chromatography. In 

the literature one finds claims [4] that in the ideal experimental 

circumstances the peaks should be gaussian, but in practice this is 

rarely, if ever, realized. At best, the peaks- display a regular 

shew-gaussian form, for which one can find an appropriate analytical 

expression [5]. 



n 
GAUSSIAN SHAPE 

---+ 
SKEW-GAUSSIAN SHAPE 

There exist a very simple test for checking whether a peak is gaussien. 

St is based on the characteristic property of gaussian functions, namely 

c 
-b (%-xop c 

The associated algorithm goes as follows. Denote by yi the data-lit&s-. 
g&j - 3; -_ + 

Construct the array t; = - 
;f ; 

and plot 2: versus i _ 

Over a genuinely gaassian peak this plot should be Hnear. 

GENUI:;Z GAUSSINJ PEAK 



Unfortunately, it does not appear that this simple method can be modified 

so that it can be used in the problem of resolution of composite peaks. 

The deviations from linearity tell us very little about the internal 

structure of the composite peaks - except that they are definitely not 

gaussian. 

Other types of peak shapes: 

Aside from gaussian functions, other analytical forms have been 

tried., some :of them quite involved [S] and depending on as much as four 

or five free parameters. We do not list here all options that are 

offered in the literature, but only briefly discuss the Poisson Distribution 

Peaks [6] which seem to be of relevance in gas chromatography. The 

functional form is determined by the two parameters a and n : 

It is easy to verify that the function 

satisfies the differential identity 



and it is this identity which serves as a basis for the following sinple 

test (whether a peak is pure T rb)4 (%) type or not). 

Let, again, yi denote the data amplitudes. ConstrUt the array 

and plot its points versus the variable i. If the peak under inspection 

is of pure Poisson Distribution type, the array points Wi over the peak 

will lie on a straight line, as illustrated by 

;. 

PURE POISSON DISTRIBGTIOA PEAK 4 
, 

The idea for this test is obviously a slight modification of the idea 

for testing a gaussian character of a peak, and shares with the latter .- 

all virtues and faults. In particular, it is difficult to imagine : 

what useful information one could extract from a discovery that Wi’S do not 

lie on a straight line - except that in ti:is case the peak is definitely not 

of Poisson Distribution type. 



i 

The peaks of Breit-Wigner shape may also be of some interest in gas 

chromatography. The shape, location and the peak size are determined by three 

parameters, a, b and x0: 

If a peak is of a pure Breit-Wigner type, the points of the array 

t 3 :t4 - 1 ; 
A’ = 2.. 

should lie on a straight line,when'the subscript i runs over the area 

of the peak. 

, 



SUNNARY 

A large number of various approaches to the problem of peak resolution 

are known today. It is safe to say that none of these approaches can 

claim a complete success when confronted with composite peaks of 

sufficient complexity (for example, an overlap of four or more peaks). The 

best strategy, then, seems to be to avoid the occurance of multiple peak 

clusters altogether. The novel approach to the utilization of data 

from the GC-MS combination, mentioned in the Introduction, offers a 

great promise in this respect. Since it is quite unlikely that more 

than two chemical substances in a sample, with very similar GC retention 

times, will have only one prominent ion in theSr mass spectra, and that 

this ion will happen to be the same, we can expect to encounter rarely, if 

ever, the need to deal with an overlap of more than two peaks in an 

individual mass chromatogram. This situation should be contrasted to 

a total ion current plot from a gas chromatograph, where an overlap of 

three. or more peaks is not an infrequent occurance, But an overlap. 
. 

of two, or even three, peaks is sufficiently simple to be amenable to analysis by 

most good peak-resolving algorithms. My pfeference, in this case, is 

either the use of standard least squares techniques [5, Jf, or a godd 

heuristic algorithm based on geometrical considerations - -:- 
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